

 Navigation

 	
 index

 	
 next |

 	cjklib 0.3.2 documentation

cjklib — Han character library

Cjklib provides language routines related to Han characters (characters based
on Chinese characters named Hanzi, Kanji, Hanja and chu Han respectively) used
in writing of the Chinese, the Japanese, infrequently the Korean and formerly
the Vietnamese language(s). Functionality is included for character
pronunciations, radicals, glyph components, stroke decomposition and variant
information.

This document is about version 0.3.2, see http://cjklib.org/ for the newest
and http://cjklib.org/current for the current development version. The project
is hosted on http://code.google.com/p/cjklib. See http://characterdb.cjklib.org/
for a collaborative effort on gathering language data for cjklib.

Contents:

	Downloading & Installing
	Windows

	Unix

	Development version

	Database

	Command line tools
	cjknife — Command Line Interface

	installcjkdict — Install dictionaries

	buildcjkdb — Build database

	Reference

	To do

Examples

	Get characters by pronunciation (here: “국” in Korean):

	>>> from cjklib import characterlookup
>>> cjk = characterlookup.CharacterLookup('T')
>>> cjk.getCharactersForReading(u'국', 'Hangul')
[u'匊', u'國', u'局', u'掬', u'菊', u'跼', u'鞠', u'鞫', u'麯', u'麴']

	Get stroke order of characters:

	>>> cjk.getStrokeOrder(u'说')
[u'㇔', u'㇊', u'㇔', u'㇒', u'㇑', u'㇕', u'㇐', u'㇓', u'㇟']

	Convert pronunciation data (here from Pinyin to IPA):

	>>> from cjklib.reading import ReadingFactory
>>> f = ReadingFactory()
>>> f.convert(u'lǎoshī', 'Pinyin', 'MandarinIPA')
u'lau˨˩.ʂʅ˥˥'

	Access a dictionary (here using Jim Breen’s EDICT):

	>>> from cjklib.dictionary import EDICT
>>> d = EDICT()
>>> d.getForTranslation('Tokyo')
[EntryTuple(Headword=u'東京', Reading=u'とうきょう', Translation=u'/(n) Tokyo (current capital of Japan)/(P)/')]

Copyright & License

Copyright (C) 2006-2012 cjklib developers

cjklib comes with absolutely no warranty; for details see License.

Parts of the data used by this library have their own copyright:

	Copyright © 1991-2009 Unicode, Inc. All rights reserved. Distributed
under the Terms of Use in http://www.unicode.org/copyright.html.

Permission is hereby granted, free of charge, to any person
obtaining a copy of the Unicode data files and any associated
documentation (the “Data Files”) or Unicode software and any
associated documentation (the “Software”) to deal in the Data Files
or Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, and/or sell
copies of the Data Files or Software, and to permit persons to whom
the Data Files or Software are furnished to do so, provided that (a)
the above copyright notice(s) and this permission notice appear with
all copies of the Data Files or Software, (b) both the above
copyright notice(s) and this permission notice appear in associated
documentation, and (c) there is clear notice in each modified Data
File or in the Software as well as in the documentation associated
with the Data File(s) or Software that the data or software has been
modified.

	Decomposition data Copyright 2009 by Gavin Grover

	Shanghainese pronunciation data Copyright 2010 by Kellen Parker and
Allan Simon, http://www.sinoglot.com/wu/tools/data/.

The library and all parts are distributed under the terms of the LGPL
Version 3, 29 June 2007 (http://www.gnu.org/licenses/lgpl.html) if not
otherwise noted.

Contact

For help or discussions on cjklib, join cjklib-devel@googlegroups.com [http://groups.google.com/group/cjklib-devel].

Please report bugs to the project’s bug tracker [http://code.google.com/p/cjklib/issues/list].

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cjklib 0.3.2 documentation

Downloading & Installing

cjklib has the following dependencies:

	Python [http://www.python.org/download/] 2.4 or above (currently no support for Python3)

	SQLite [http://www.sqlite.org/download.html] 3+

	SQLAlchemy [http://www.sqlalchemy.org/download.html] 0.4.8+

	pysqlite2 [http://code.google.com/p/pysqlite/downloads/list] (already ships with Python 2.5 and above)

Alternatively for MySQL as backend:

	MySQL [http://www.mysql.com/downloads/mysql/] 5+

	MySQL-Python [http://sourceforge.net/projects/mysql-python/]

Windows

Download the .exe installer from the
Python package index [http://pypi.python.org/pypi/cjklib/] and run it.

Three scripts cjknife.exe, buildcjkdb.exe, and installcjkdict.exe
will be added to the Python Scripts sub-directory. Make sure this directory
is included in your PATH environment variable to access these programs from
the command line.

CJK dictionaries are not included by default. If you want to install any of
those run the following (with an Internet connection):

$ installcjkdict CEDICT

This will download CEDICT, create a SQLite database file and install it under
the directory given by the APPDATA environment variable, e.g.
C:\windows\profiles\MY_USER\Application Data\cjklib. Just substitute
CEDICT for any other supported dictionary (i.e. EDICT, CEDICT, HanDeDict,
CFDICT, CEDICTGR).

Unix

Get the source package from the
Python package index [http://pypi.python.org/pypi/cjklib/] and deploy the
library on your system:

$ sudo python setup.py install

CJK dictionaries are not included by default. If you want to install any of
those run the following (with an Internet connection):

$ sudo installcjkdict CEDICT

This will download CEDICT, create a SQLite database file and install it to
/usr/local/share/cjklib. Just substitute CEDICT for any other supported
dictionary (i.e. EDICT, CEDICT, HanDeDict, CFDICT, CEDICTGR).

Development version

The development version is available from svn:

$ git clone git://github.com/cburgmer/cjklib.git

You now need to generate the database. Download the Unihan database and call
the build CLI (which is not yet installed as executable):

$ cd cjklib
$ wget ftp://ftp.unicode.org/Public/UNIDATA/Unihan.zip
$ python -m cjklib.build.cli build cjklibData --attach= \
 --database=sqlite:///cjklib/cjklib.db
$ sqlite3 cjklib/cjklib.db "VACUUM"

The last step is optional but will help to optimize the database file.

Install by running:

$ sudo python setup.py install

Database

Packaged versions of the library will ship with a pre-built SQLite database
file. You can however easily rebuild the database yourself.

First download the newest Unihan file:

$ wget ftp://ftp.unicode.org/Public/UNIDATA/Unihan.zip

Then start the build process:

$ sudo buildcjkdb -r build cjklibData

SQLite

SQLite by default has no Unicode support for string operations. Optionally the
ICU library can be compiled in for handling alphabetic non-ASCII characters.
Cjklib can register own Unicode functions if ICU support is missing. Queries
with LIKE will then use function lower(). This compatibility mode has
negative impact on performance and as it is not needed for dictionaries like
EDICT or CEDICT it is disabled by default. See cjklib.conf for enabling.

MySQL

With MySQL 5 the following CREATE command creates a database with utf8
as character set using the general Unicode collation
(MySQL from 5.5.3 on will support full Unicode given character set
utf8mb4 and collation utf8mb4_bin):

CREATE DATABASE cjklib DEFAULT CHARACTER SET utf8 COLLATE utf8_bin;

You might need to set access rights, too (substitute user_name and
host_name):

GRANT ALL ON cjklib.* TO 'user_name'@'host_name';

Now update the settings in cjklib.conf.

MySQL < 5.5 doesn’t support full UTF-8, and uses a version with max 3 bytes, so
characters outside the Basic Multilingual Plane (BMP) can’t be encoded. Building
the Unihan database thus might result in warnings, characters above U+FFFF
can’t be built at all. You need to disable building the full character range
by setting wideBuild to False in cjklib.conf before building.
Alternatively pass --wideBuild=False to buildcjkdb.

 Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cjklib 0.3.2 documentation

Command line tools

Contents:

	cjknife — Command Line Interface
	Examples

	Options

	installcjkdict — Install dictionaries
	Examples

	Options

	buildcjkdb — Build database
	Options

 Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cjklib 0.3.2 documentation

 	Command line tools

cjknife — Command Line Interface

cjknife exposes most functions of the library to the command line.

Examples

Show character information:

$ cjknife -i 周
Information for character 周 (traditional locale, Unicode domain)
Unicode codepoint: 0x5468 (21608, character form)
Radical index: 30, radical form: ⼝
Stroke count: 8
Phonetic data (CantoneseYale): jāu
Phonetic data (GR): jou
Phonetic data (Hangul): 주
Phonetic data (Jyutping): zau1
Phonetic data (MandarinBraille): ⠌⠷⠁
Phonetic data (MandarinIPA): tʂou˥˥
Phonetic data (Pinyin): zhōu
Phonetic data (ShanghaineseIPA): ʦɤ˥˧
Phonetic data (WadeGiles): chou1
Semantic variants: 週
Glyph 0(*), stroke count: 8
⿵⺆⿱土口
Stroke order: ㇓㇆㇐㇑㇐㇑㇕㇐ (SP-HZG H-S-H S-HZ-H)

Search the EDICT dictionary:

$ cjknife -w EDICT -x "knowledge"
ナレッジ /(n) knowledge/
ノリッジ /(n) knowledge/
ノレッジ /(n) knowledge/
学 がく /(n) learning/scholarship/erudition/knowledge/(P)/
学殖 がくしょく /(n) scholarship/learning/knowledge/
学力 がくりょく /(n) scholarship/knowledge/literary ability/(P)/
心得 こころえ /(n) knowledge/information/(P)/
人智 じんち /(n) human intellect/knowledge/
人知 じんち /(n) human intellect/knowledge/
知見 ちけん /(n,vs) expertise/experience/knowledge/
智識 ちしき /(n) knowledge/
知識 ちしき /(n) knowledge/information/(P)/
知得 ちとく /(n,vs) comprehension/knowledge/
弁え わきまえ /(n) sense/discretion/knowledge/
辨え わきまえ /(oK) (n) sense/discretion/knowledge/

See also

	Screenshots [http://code.google.com/p/cjklib/wiki/Screenshots]

	Examples on the project’s wiki.

Options

	
-i CHAR, --information=CHAR

	print information about the given char

	
-a READING, --by-reading=READING

	prints a list of characters for the given reading

	
-r CHARSTR, --get-reading=CHARSTR

	prints the reading for a given character string (for characters with multiple
readings these are grouped in square brackets; shows the character itself if
no reading information available)

	
-f CHARSTR, --convert-form=CHARSTR

	converts the given characters from/to Chinese simplified/traditional form (if
ambiguous multiple characters are grouped in brackets)

	
-q CHARSTR

	performs commands -r and -f in one step

	
-k RADICALIDX, --by-radicalidx=RADICALIDX

	get all characters for a radical given by its index

	
-p CHARSTR, --by-components=CHARSTR

	get all characters that include all the chars contained in the given list as
component

	
-m READING, --convert-reading=READING

	converts the given reading from the input reading to the output reading
(compatibility needed)

	
-s SOURCE, --source-reading=SOURCE

	set given reading as input reading

	
-t TARGET, --target-reading=TARGET

	set given reading as output reading

	
-l LOCALE, --locale=LOCALE

	set locale, i.e. one character out of TCJKV

	
-d DOMAIN, --domain=DOMAIN

	set character domain, e.g. ‘GB2312’

	
-L, --list-options

	list available options for parameters

	
-V, --version

	print version number and exit

	
-h, --help

	display this help and exit

	
--database=DATABASEURL

	database url

	
-x SEARCHSTR

	searches the dictionary (wildcards ‘_’ and ‘%’)

	
-w DICTIONARY, --set-dictionary=DICTIONARY

	set dictionary

 Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cjklib 0.3.2 documentation

 	Command line tools

installcjkdict — Install dictionaries

installcjkdict downloads and installs a dictionary.

Examples

Download and install CEDICT to $HOME/cjklib/ (Windows), $HOME/.cjklib/
(Unix) or $HOME/Library/Application Support/ (Mac OS X):

$ installcjkdict --local CEDICT

Download CFDICT:

$ installcjkdict --download CFDICT
Getting download page http://www.chinaboard.de/cfdict.php?mode=dl... done
Found version 2009-11-30
Downloading http://www.chinaboard.de/cfdict/cfdict-20091130.tar.bz2...
100% |###| Time: 00:00:00 193.85 B/s
Saved as cfdict-20091130.tar.bz2

Options

	
--version

	show program’s version number and exit

	
-h, --help

	show this help message and exit

	
-f, --forceUpdate

	install dictionary even if the version is older or equal

	
--prefix=PREFIX

	installation prefix

	
--local

	install to user directory

	
--download

	download only

	
--targetName=TARGETNAME

	target name of downloaded file (only with –download)

	
--targetPath=TARGETPATH

	target directory of downloaded file (only with –download)

	
-q, --quiet

	don’t print anything on stdout

	
--database=URL

	database url

	
--attach=URL

	attachable databases

	
--registerUnicode=BOOL

	register own Unicode functions if no ICU support available

Global builder options

	
--collation=VALUE

	collation for dictionary entries

	
--enableFTS3=BOOL

	enable SQLite full text search (FTS3)

	
--useCollation=BOOL

	use collations for dictionary entries

 Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cjklib 0.3.2 documentation

 	Command line tools

buildcjkdb — Build database

buildcjkdb builds the database for the cjklib library. Example:
buildcjkdb build allAvail.

Builders can be given specific options with format --BuilderName-option
or --TableName-option, e.g. --Unihan-wideBuild=yes.

Options

	
--version

	show program’s version number and exit

	
-h, --help

	show this help message and exit

	
-r, --rebuild

	build tables even if they already exist

	
-d, --keepDepending

	don’t rebuild build-depends tables that are not given

	
-p BUILDER, --prefer=BUILDER

	builder preferred where several provide the same table

	
-q, --quiet

	don’t print anything on stdout

	
--database=URL

	database url

	
--attach=URL

	attachable databases

	
--registerUnicode=BOOL

	register own Unicode functions if no ICU support available

	
--ignoreConfig

	ignore settings from cjklib.conf

Global builder options

	
--dataPath=VALUE

	path to data files

	
--entrywise=BOOL

	insert entries one at a time (for debugging)

	
--ignoreMissing=BOOL

	ignore missing Unihan column and build empty table

	
--wideBuild=BOOL

	include characters outside the Unicode BMP

	
--slimUnihanTable=BOOL

	limit keys of Unihan table

	
--collation=VALUE

	collation for dictionary entries

	
--enableFTS3=BOOL

	enable SQLite full text search (FTS3)

	
--filePath=VALUE

	file path including file name, overrides searching

	
--fileType=VALUE

	file extension, overrides file type guessing

	
--useCollation=BOOL

	use collations for dictionary entries

 Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	cjklib 0.3.2 documentation

Reference

	characterlookup
	

	cjknife
	

	build
	

	build.builder
	

	build.cli
	

	dbconnector
	

	dictionary
	

	dictionary.entry
	

	dictionary.format
	

	dictionary.install
	

	dictionary.search
	

	exception
	

	reading
	

	reading.converter
	

	reading.operator
	

	test [http://docs.python.org/library/test.html#module-test]
	

	test.build
	

	test.characterlookup
	

	test.dictionary
	

	test.readingoperator
	

	test.readingconverter
	

	util
	

 Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	cjklib 0.3.2 documentation

To do

 Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	cjklib 0.3.2 documentation

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W
 | Y

Symbols

 	

 	
 --attach=URL

 	

 	buildcjkdb command line option

 	installcjkdict command line option

 	
 --collation=VALUE

 	

 	buildcjkdb command line option

 	installcjkdict command line option

 	
 --database=DATABASEURL

 	

 	cjknife command line option

 	
 --database=URL

 	

 	buildcjkdb command line option

 	installcjkdict command line option

 	
 --dataPath=VALUE

 	

 	buildcjkdb command line option

 	
 --download

 	

 	installcjkdict command line option

 	
 --enableFTS3=BOOL

 	

 	buildcjkdb command line option

 	installcjkdict command line option

 	
 --entrywise=BOOL

 	

 	buildcjkdb command line option

 	
 --filePath=VALUE

 	

 	buildcjkdb command line option

 	
 --fileType=VALUE

 	

 	buildcjkdb command line option

 	
 --ignoreConfig

 	

 	buildcjkdb command line option

 	
 --ignoreMissing=BOOL

 	

 	buildcjkdb command line option

 	
 --local

 	

 	installcjkdict command line option

 	
 --prefix=PREFIX

 	

 	installcjkdict command line option

 	
 --registerUnicode=BOOL

 	

 	buildcjkdb command line option

 	installcjkdict command line option

 	
 --slimUnihanTable=BOOL

 	

 	buildcjkdb command line option

 	
 --targetName=TARGETNAME

 	

 	installcjkdict command line option

 	
 --targetPath=TARGETPATH

 	

 	installcjkdict command line option

 	
 --useCollation=BOOL

 	

 	buildcjkdb command line option

 	installcjkdict command line option

 	
 --version

 	

 	buildcjkdb command line option

 	installcjkdict command line option

 	
 --wideBuild=BOOL

 	

 	buildcjkdb command line option

 	
 -a READING, --by-reading=READING

 	

 	cjknife command line option

 	

 	
 -d DOMAIN, --domain=DOMAIN

 	

 	cjknife command line option

 	
 -d, --keepDepending

 	

 	buildcjkdb command line option

 	
 -f CHARSTR, --convert-form=CHARSTR

 	

 	cjknife command line option

 	
 -f, --forceUpdate

 	

 	installcjkdict command line option

 	
 -h, --help

 	

 	buildcjkdb command line option

 	cjknife command line option

 	installcjkdict command line option

 	
 -i CHAR, --information=CHAR

 	

 	cjknife command line option

 	
 -k RADICALIDX, --by-radicalidx=RADICALIDX

 	

 	cjknife command line option

 	
 -l LOCALE, --locale=LOCALE

 	

 	cjknife command line option

 	
 -L, --list-options

 	

 	cjknife command line option

 	
 -m READING, --convert-reading=READING

 	

 	cjknife command line option

 	
 -p BUILDER, --prefer=BUILDER

 	

 	buildcjkdb command line option

 	
 -p CHARSTR, --by-components=CHARSTR

 	

 	cjknife command line option

 	
 -q CHARSTR

 	

 	cjknife command line option

 	
 -q, --quiet

 	

 	buildcjkdb command line option

 	installcjkdict command line option

 	
 -r CHARSTR, --get-reading=CHARSTR

 	

 	cjknife command line option

 	
 -r, --rebuild

 	

 	buildcjkdb command line option

 	
 -s SOURCE, --source-reading=SOURCE

 	

 	cjknife command line option

 	
 -t TARGET, --target-reading=TARGET

 	

 	cjknife command line option

 	
 -V, --version

 	

 	cjknife command line option

 	
 -w DICTIONARY, --set-dictionary=DICTIONARY

 	

 	cjknife command line option

 	
 -x SEARCHSTR

 	

 	cjknife command line option

A

 	

 	
 abbreviated

 	

 	form

 	stroke name

 	

 	apostrophe

B

 	

 	
 Basic

 	

 	Multilingual Plane

 	
 basic

 	

 	entity, reading; entity, formatting; entity

 	
 binary

 	

 	IDS operator

 	
 Braille

 	

 	Mandarin

 	

 	
 brige

 	

 	reading

 	
 build

 	

 	narrow

 	
 buildcjkdb command line option

 	

 	--attach=URL

 	--collation=VALUE

 	--dataPath=VALUE

 	--database=URL

 	--enableFTS3=BOOL

 	--entrywise=BOOL

 	--filePath=VALUE

 	--fileType=VALUE

 	--ignoreConfig

 	--ignoreMissing=BOOL

 	--registerUnicode=BOOL

 	--slimUnihanTable=BOOL

 	--useCollation=BOOL

 	--version

 	--wideBuild=BOOL

 	-d, --keepDepending

 	-h, --help

 	-p BUILDER, --prefer=BUILDER

 	-q, --quiet

 	-r, --rebuild

C

 	

 	
 Cantonese

 	

 	IPA

 	Yale

 	
 character

 	

 	decomposition

 	domain

 	equivalent

 	isolated radical

 	locale

 	reading

 	
 cjknife command line option

 	

 	--database=DATABASEURL

 	-L, --list-options

 	-V, --version

 	-a READING, --by-reading=READING

 	-d DOMAIN, --domain=DOMAIN

 	-f CHARSTR, --convert-form=CHARSTR

 	-h, --help

 	-i CHAR, --information=CHAR

 	-k RADICALIDX, --by-radicalidx=RADICALIDX

 	-l LOCALE, --locale=LOCALE

 	-m READING, --convert-reading=READING

 	-p CHARSTR, --by-components=CHARSTR

 	-q CHARSTR

 	-r CHARSTR, --get-reading=CHARSTR

 	-s SOURCE, --source-reading=SOURCE

 	-t TARGET, --target-reading=TARGET

 	-w DICTIONARY, --set-dictionary=DICTIONARY

 	-x SEARCHSTR

 	

 	
 component

 	

 	minimal

 	
 count, stroke; order

 	

 	stroke

D

 	

 	
 decomposition

 	

 	character

 	unambiguous

 	
 decomposition, ambiguous; decomposition, letter; case

 	

 	strict

 	
 Description

 	

 	Sequence, Ideographic

 	

 	
 dialect, dialect; converter

 	

 	reading

 	
 domain

 	

 	character

E

 	

 	
 entity

 	

 	plain

 	
 entity, reading; entity, formatting; entity

 	

 	basic

 	
 entry

 	

 	factory

 	
 equivalent

 	

 	character

 	

 	er-ization

 	Erhua, [1]

 	Erlhuah

F

 	

 	
 factory

 	

 	entry

 	
 falling

 	

 	tone, high

 	
 form

 	

 	abbreviated

 	

 	
 form, Unicode; radical; variant

 	

 	Unicode radical

 	
 formatting

 	

 	strategy

G

 	

 	glyph

 	GR

 	

 	Gwoyeu_Romatzyh

H

 	

 	Hangul

 	
 Hanyu

 	

 	Pinyin

 	
 headword

 	

 	search strategy

 	

 	
 high

 	

 	falling tone

 	level tone

 	Hiragana

I

 	

 	
 Ideographic

 	

 	Description Sequence

 	
 IDS

 	

 	operator

 	operator, binary

 	operator, trinary

 	
 installcjkdict command line option

 	

 	--attach=URL

 	--collation=VALUE

 	--database=URL

 	--download

 	--enableFTS3=BOOL

 	--local

 	--prefix=PREFIX

 	--registerUnicode=BOOL

 	--targetName=TARGETNAME

 	--targetPath=TARGETPATH

 	--useCollation=BOOL

 	--version

 	-f, --forceUpdate

 	-h, --help

 	-q, --quiet

 	

 	
 IPA

 	

 	Cantonese

 	Mandarin

 	Shanghainese

 	
 isolated

 	

 	radical character

J

 	

 	Jyutping

K

 	

 	Kana

 	

 	Katakana

L

 	

 	
 letters

 	

 	shortened

 	
 level

 	

 	tone, high

 	

 	
 locale

 	

 	character

 	LSHK

M

 	

 	
 Mandarin

 	

 	Braille

 	IPA

 	
 marker

 	

 	repetition

 	
 minimal

 	

 	component

 	

 	
 mixed

 	

 	reading search

 	search strategy

 	
 Multilingual

 	

 	Plane, Basic

N

 	

 	
 name

 	

 	abbreviated stroke

 	stroke

 	
 narrow

 	

 	build

 	

 	
 neutral

 	

 	tone, optional

O

 	

 	
 operator

 	

 	IDS

 	binary IDS

 	trinary IDS

 	

 	
 optional

 	

 	neutral tone

P

 	

 	
 pair

 	

 	surrogate

 	
 Pinyin

 	

 	Hanyu

 	

 	
 plain

 	

 	entity

 	
 Plane

 	

 	Basic Multilingual

R

 	

 	R-colouring, [1]

 	
 radical

 	

 	character, isolated

 	form, Unicode; radical; variant, Unicode

 	
 reading

 	

 	brige

 	character

 	dialect, dialect; converter

 	search strategy

 	search, mixed

 	

 	
 repetition

 	

 	marker

 	romanisation, [1]

S

 	

 	
 sandhi

 	

 	tone

 	
 search

 	

 	mixed reading

 	strategy

 	strategy, headword

 	strategy, mixed

 	strategy, reading

 	strategy, translation

 	
 Sequence

 	

 	Ideographic Description

 	
 Shanghainese

 	

 	IPA

 	
 shortened

 	

 	letters

 	simple: BMP

 	simple: IDS

 	

 	
 stop

 	

 	tones

 	
 strategy

 	

 	formatting

 	headword search

 	mixed search

 	reading search

 	search

 	translation search

 	
 strict

 	

 	decomposition, ambiguous; decomposition, letter; case

 	
 stroke

 	

 	count, stroke; order

 	name

 	name, abbreviated

 	
 surrogate

 	

 	pair

 	syllable

T

 	

 	tone

 	

 	high falling

 	high level

 	optional neutral

 	sandhi

 	
 tones

 	

 	stop

 	

 	
 translation

 	

 	search strategy

 	
 trinary

 	

 	IDS operator

U

 	

 	
 unambiguous

 	

 	decomposition

 	

 	
 Unicode

 	

 	radical form, Unicode; radical; variant

W

 	

 	Wade-Giles

Y

 	

 	
 Yale

 	

 	Cantonese

 Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

 library/cjklib.test.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

cjklib.test — Unit tests

Functions

Classes

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

library/cjklib.reading.converter.GRDialectConverter.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

GRDialectConverter – Gwoyeu Romatzyh dialects

Class

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

library/cjklib.test.readingoperator.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

cjklib.test.readingoperator — Unit tests for reading.operator

Classes

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

library/cjklib.reading.operator.KanaOperator.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

KanaOperator — Japanese Kana

cjklib.reading.operator.KanaOperator is a simple, yet experimental
implementation of the Japanese Kana writings.

Class

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

library/cjklib.build.builder.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

cjklib.build.builder — Build methods

Classes

New in version 0.3.

New in version 0.3.

New in version 0.3.

New in version 0.3.

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

library/cjklib.reading.converter.PinyinIPAConverter.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

PinyinIPAConverter — Hanyu Pinyin to IPA

Specifics

The standard conversion table is based on the source mentioned below.
Though depiction in IPA depends on many factors and therefore might highly
vary it seems this source is not error-free: final -üan written [yan]
should be similar to -ian [iɛn] and -iong written [yŋ] should be
similar to -ong [uŋ].

As IPA allows for a big range of different representations for the sounds
in a varying degree no conversion to Pinyin is offered.

Currently conversion of Erhua sound is not supported.

Features:

		Default tone sandhi handling for lower third tone and neutral tone,

		extensibility of tone sandhi handling,

		extensibility for general coarticulation effects.

Limitations:

		Tone sandhi needs special treatment depending on the user’s needs,

		transcription of onomatopoeic words will be limited to the general
syllable scheme,

		limited linking between syllables (e.g. for 啊、呕) will not be
considered and

		stress, intonation and accented speech are not covered.

Tone sandhi

Speech in tonal languages is generally subject to tone sandhi. For
example in Mandarin bu4 cuo4 for 不错 will render to bu2 cuo4, or
lao3shi1 (老师) with a tone contour of 214 for lao3 and 55 for shi1
will render to a contour 21 for lao3.

When translating to IPA the system has to deal with these tone sandhis and
therefore provides an option 'sandhiFunction' that can be set to the user
specified handler. PinyinIPAConverter will only provide a very basic handler
lowThirdAndNeutralToneRule()
which will apply the contour 21 for the
third tone when several syllables occur and needs the user to supply proper
tone information, e.g. ke2yi3 (可以) instead of the normal rendering as
ke3yi3 to indicate the tone sandhi for the first syllable.

Further support will be provided for varying stress on syllables in the
neutral tone. Following a first tone the weak syllable will have a half-low
pitch, following a second tone a middle, following a third tone a half-high
and following a forth tone a low pitch.

There a further occurrences of tone sandhis:

		pronunciations of 一 and 不 vary in different tones depending on their
context,

		directional complements like 拿出来 ná chu lai under some
circumstances loose their tone,

		in a three syllable group ABC the second syllable B changes from
second tone to first tone when A is in the first or second tone and
C is not in the neutral tone.

Coarticulation

In most cases conversion from Pinyin to IPA is straightforward if one does
not take tone sandhi into account. There are case though (when leaving
aside tones), where phonetic realisation of a syllable depends on its
context. The converter allows for handling coarticulation effects by
adding a hook coarticulationFunction to which a user-implemented
function can be given. An example implementation is given with
finalECoarticulation().

Pronunciation of final e

finalECoarticulation()
supports the following coarticulation occurrence:
The final e found in syllables de, me and others is
pronounced /ɤ/ in the general case (see source below) but if tonal
stress is missing it will be pronounced /ə/. This implementation will
take care of this for the fifth tone. If no tone is specified
('None') an ConversionError will be raised for
the syllables affected.

Source: Hànyǔ Pǔtōnghuà Yǔyīn Biànzhèng (汉语普通话语音辨正). Page 15,
Běijīng Yǔyán Dàxué Chūbǎnshè (北京语言大学出版社), 2003,
ISBN 7-5619-0622-6.

Source

		
		Hànyǔ Pǔtōnghuà Yǔyīn Biànzhèng (汉语普通话语音辨正). Page 15, Běijīng Yǔyán

		Dàxué Chūbǎnshè (北京语言大学出版社), 2003, ISBN 7-5619-0622-6.

		
		San Duanmu: The Phonology of Standard Chinese. Second edition, Oxford

		University Press, 2007, ISBN 978-0-19-921578-2, ISBN 978-0-19-921579-9.

		
		Yuen Ren Chao: A Grammar of Spoken Chinese. University of California

		Press, Berkeley, 1968, ISBN 0-520-00219-9.

See also

		Mandarin tone sandhi [http://web.mit.edu/jinzhang/www/pinyin/tones/index.html]

		Article on Mandarin tones

		IPA [http://en.wikipedia.org/wiki/International_Phonetic_Alphabet]

		Article on Wikipedia

		The Phonology of Standard Chinese. First edition, 2000 [http://books.google.de/books?id=tG0-Ad9CrBcC]

		Preview on Google Books

Class

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

_static/comment-close.png

library/cjklib.dictionary.install.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

cjklib.dictionary.install — Install dictionaries

New in version 0.3.

See also

		installcjkdict — Install dictionaries

		Documentation on the CLI

Functions

Classes

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

library/cjklib.reading.operator.GROperator.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

GROperator — Gwoyeu Romatzyh

cjklib.reading.operator.GROperator is a mature implementation of
the Chinese Gwoyeu Romatzyh romanisation (國語羅馬字, often abbreviated GR).
Gwoyeu Romatzyh is different from most other romanisation methods
as that it encodes Chinese tones using alphabetic characters
instead of diacritics or digits.

Features:

		support of abbreviated forms (zh, j, g, sherm, ...),

		conversion of abbreviated forms to full forms,

		placement of apostrophes before 0-initial syllables,

		support for different apostrophe characters,

		support for r-coloured syllables (Erlhuah),

		syllable repetition markers (x, v, vx) and

		guessing of input form (reading dialect).

Specifics

Tones

Tones are transcribed rigorously as syllables in the neutral tone
additionally carry the original (etymological) tone information. Y.R. Chao
also annotates the optional neutral tone (e.g. buh jy˳daw) which can
be pronounced with either the neutral tone or the etymological one. Compared
to other reading operators for Mandarin, special care has to be taken to
cope with these special requirements.

R-colouring

Gwoyeu Romatzyh renders rhotacised syllables (Erlhuah, er-ization) by trying to
give the actual pronunciation. As the effect of r-colouring loses the
information of the underlying etymological syllable conversion between the
r-coloured form back to the underlying form can not be done in an
unambiguous way. As furthermore finals i, iu, in, iun contrast
in the first and the second tone but not in the third and the forth tone
conversion between different tones (including the base form) cannot be made
in a general manner: 小鸡儿 sheau-jiel is different to 小街儿
sheau-jie’l but 几儿 jieel (from jǐ) equals 姐儿 jieel (from jiě),
see Chao.

Thus this ReadingOperator lacks the general handling of syllable renderings
and many methods narrow the range of syllables allowed. While original forms
can carry any tone (even though Mandarin doesn’t make use of some
combinations), r-coloured forms for Erlhuah will currently be limited to
those given in the source by Y.R. Chao. Those not mentioned there will raise
an UnsupportedError.

Abbreviations

Yuen Ren Chao includes several abbreviated forms in his books (references
see below). For example 個/个 which would be fully transcribed as .geh or
˳geh is abbreviated as g. These forms can be accessed by
getAbbreviatedForms() and
getAbbreviatedFormData(), and
their usage can be contolled by option 'abbreviations'. Use the
GRDialectConverter
to convert these abbreviations into their full forms:

>>> from cjklib.reading import ReadingFactory
>>> f = ReadingFactory()
>>> f.convert('Hairtz', 'GR', 'GR', breakUpAbbreviated='on')
u'Hair.tzy'

Repetition markers

Special abbreviated forms are given in form of repetition markers.
These take the form x and v or a combination vx for repetition of
the last syllable/the second last syllable or both, e.g. shie.x for
shie.shie, deengiv for deengideeng and duey .le vx for
duey .le duey .le. Both forms can be preceded by a neutral tone mark,
e.g. .x or ˳v.

Sources

		Yuen Ren Chao: A Grammar of Spoken Chinese. University of California
Press, Berkeley, 1968, ISBN 0-520-00219-9.

		Yuen Ren Chao: Mandarin Primer: an intensive course in spoken Chinese.
Harvard University Press, Cambridge, 1948.

See also

		GR Junction [http://home.iprimus.com.au/richwarm/gr/gr.htm]

		by Richard Warmington

		A Guide to Gwoyeu Romatzyh Tonal Spelling of Chinese [http://eall.hawaii.edu/chn/chn451/03-Luomazi/GR.html]

		Overview article

		Gwoyeu Romatzyh [http://en.wikipedia.org/wiki/Gwoyeu_Romatzyh]

		Article on the English Wikipedia

Class

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

library/cjklib.reading.converter.PinyinWadeGilesConverter.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

PinyinWadeGilesConverter — Hanyu Pinyin to Wade-Giles

Specifics

Upper- or lowercase will be transfered between syllables, no special
formatting according to anyhow defined standards will be guaranteed.
Upper-/lowercase will be identified according to three classes: either the
whole syllable is uppercase, only the initial letter is uppercase
(titlecase) or otherwise the whole syllable is assumed being lowercase. For
entities of single latin characters uppercase has precedence over titlecase,
e.g. R5 will convert to ER5 when Erhua forms are “unroled”, not to
Er5.

Conversion cannot in general be done in a one-to-one manner. Standard Pinyin
has no notion to explicitly specify missing tonal information while this is
in general given in Wade-Giles by just omitting the tone digits. This
implementation furthermore doesn’t support explicit depiction of Erhua in
the Wade-Giles romanisation system thus failing when r-colourised syllables
are found.

Class

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

library/cjklib.util.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

cjklib.util — Utilities

Functions

Classes

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

library/cjklib.reading.operator.PinyinOperator.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

PinyinOperator — Hanyu Pinyin

cjklib.reading.operator.PinyinOperator is a complete implementation of
the standard Chinese Pinyin romanisation (Hanyu Pinyin Fang’an, 汉语拼音方案,
standardised in ISO 7098).

Features:

		tones marked by either diacritics or numbers,

		flexible handling of misplaced tone marks on input,

		flexible handling of wrong diacritics (e.g. breve instead of caron),

		correct placement of apostrophes to separate syllables,

		alternative representation of ü-character,

		alternatively shortend letters ŋ, ẑ, ĉ, ŝ,

		guessing of input form (reading dialect),

		support for Erhua and

		splitting of syllables into onset and rhyme.

Specifics

Apostrophes

Pinyin syllables need to be separated by an apostrophe in case their
decomposition will get ambiguous. A famous example might be the city
Xi’an, which if written xian would be read as one syllable, meaning
e.g. ‘fresh’. Another example would be Chang’an which could be read
chan’gan if no delimiter is used in at least one of both cases.

Different rules exist where to place apostrophes. A simple yet sufficient
rule is implemented in
aeoApostropheRule()
which is used as default in this class. Syllables starting with one of the
three vowels a, e, o will be separated. Remember that vowels
[i], [u], [y] are represented as yi, wu, yu respectively,
thus making syllable boundaries clear.
compose()
will place apostrophes where required when composing the reading string.

An alternative rule can be specified to the constructor passing a function
as an option pinyinApostropheFunction. A possible function could be a
rule separating all syllables by an apostrophe thus simplifying the reading
process for beginners.

On decomposition of strings it is important to check which of the possibly
several choices will be the one actually meant. E.g. syllable xian given
above should always be segmented into one syllable, solution xi’an is not
an option in this case. Therefore an alternative to
aeoApostropheRule()
should make sure it guarantees proper decomposition, which is tested through
isStrictDecomposition().

Last but not least compose(decompose(string)) will only be the identity
if apostrophes are applied properly according to the rule as wrongly
placed apostrophes will be kept when composing. Use
removeApostrophes()
to remove separating apostrophes.

Example

>>> def noToneApostropheRule(opInst, precedingEntity, followingEntity):
... return precedingEntity and precedingEntity[0].isalpha() \
... and not precedingEntity[-1].isdigit() \
... and followingEntity[0].isalpha()
...
>>> from cjklib.reading import ReadingFactory
>>> f = ReadingFactory()
>>> f.convert('an3ma5mi5ba5ni2mou1', 'Pinyin', 'Pinyin',
... sourceOptions={'toneMarkType': 'numbers'},
... targetOptions={'toneMarkType': 'numbers',
... 'missingToneMark': 'fifth',
... 'pinyinApostropheFunction': noToneApostropheRule})
u"an3ma'mi'ba'ni2mou1"

R-colouring

The phenomenon Erhua (兒化音/儿化音, Erhua yin), i.e. the r-colouring of
syllables, is found in the northern Chinese dialects and results from
merging the formerly independent sound er with the preceding syllable. In
written form a word is followed by the character 兒/儿, e.g. 頭兒/头儿.

In Pinyin the Erhua sound is quite often expressed by appending a single
r to the syllable of the character preceding 兒/儿, e.g. tóur for
頭兒/头儿, to stress the monosyllabic nature and in contrast to words like
兒子/儿子 ér’zi where 兒/儿 ér constitutes a single syllable.

For decomposing syllables in Pinyin it is thus important to decide if the
r marking r-colouring should be an entity on its own account stressing
the representation in the character string with an own character or rather
stressing the monosyllabic nature and being part of a syllable of the
foregoing character. This can be configured at instantiation time. By
default the two-syllable form is chosen, which is more general as both
examples are allowed: banr and ban r (i.e. one without delimiter, one
with; both though being two entities in this representation).

Placement of tones

Tone marks, if using the standard form with diacritics, are placed according
to official Pinyin rules. The PinyinOperator by default tries to work around
misplaced tone marks though, e.g. *tīan’ānmén (correct: tiān’ānmén),
to ease handling of malformed input.
There are cases though, where this generous behaviour leads to a
different segmentation compared to the strict interpretation, as for
*hónglùo which can fall into hóng *lùo (correct: hóng luò) or
hóng lù o (also, using the first example, tī an ān mén). As the latter
result also stems from a wrong transcription, no means are implemented to
disambiguate between both solutions. The general behaviour is controlled
with option 'strictDiacriticPlacement'.

Shortened letters

Pinyin allows to shorten two-letter pairs ng, zh, ch and sh to
ŋ, ẑ, ĉ and ŝ. This behaviour can be controlled by option
'shortenedLetters'.

Source

		Yǐn Bīnyōng (尹斌庸), Mary Felley (傅曼丽): Chinese romanization:
Pronunciation and Orthography (汉语拼音和正词法). Sinolingua, Beijing,
1990, ISBN 7-80052-148-6, ISBN 0-8351-1930-0.

		Ireneus László Legeza: Guide to transliterated Chinese in the modern
Peking dialect. Conversion tables of the currently used international
and European systems with comparative tables of initials and finals.
E. J. Brill, Leiden, 1968.

See also

		Where do the tone marks go? [http://www.pinyin.info/rules/where.html]

		Tone mark rules on pinyin.info.

		Pinyin apostrophes [http://www.pinyin.info/romanization/hanyu/apostrophes.html]

		Apostrophe rules on pinyin.info.

		Pinyin initals/finals [http://www.pinyin.info/rules/initials_finals.html]

		Initial/finals table on pinyin.info.

		Erhua sound [http://en.wikipedia.org/wiki/Erhua]

		Article on Wikipedia.

		The Unicode Consortium: The Unicode Standard, Version 5.0.0 [http://www.unicode.org/versions/Unicode5.0.0/]

		Chapter 7, European Alphabetic Scripts, 7.9 Combining Marks,
defined by: The Unicode Standard, Version 5.0 (Boston, MA,
Addison-Wesley, 2007. ISBN 0-321-48091-0)

		Unicode: Combining Diacritical Marks [http://www.unicode.org/charts/PDF/U0300.pdf]

		Range: 0300-036F

		Characters and Combining Marks [http://unicode.org/faq/char_combmark.html]

		Unicode: FAQ

Class

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

library/cjklib.reading.operator.CantoneseIPAOperator.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

CantoneseIPAOperator — IPA for Cantonese

cjklib.reading.operator.CantoneseIPAOperator is an experimental
implementation of a transcription of Cantonese into the
International Phonetic Alphabet (IPA).

Features:

		Tones can be marked either with tone numbers (1-6), tone contour
numbers (e.g. 55), IPA tone bar characters or IPA diacritics,

		choice between high level and high falling tone for number marks,

		flexible set of tones,

		support for stop tones,

		handling of variable vowel length for tone contours of stop tone
syllables and

		splitting of syllables into onset and rhyme.

Specifics

CantonteseIPAOperator does not supply the same closed set of syllables as
other ReadingOperators as IPA provides different ways to represent
pronunciation. Because of that a user defined IPA syllable will not easily
map to another transcription system and thus only basic support is provided
for this direction.

This operator supplies an additional method
getOnsetRhyme() which allows
breaking down syllables into their onset and rhyme.

Tones

Tones in IPA can be expressed using different schemes. The following schemes
are implemented here:

		Numbers, tone numbers for the six-tone scheme,

		ChaoDigits, numbers displaying the levels of tone contours, e.g.
55 for the high level tone,

		IPAToneBar, IPA modifying tone bar characters, e.g. ɛw˥˥,

		None, no support for tone marks

Implementational details

The operator comes with three different set of tones to accommodate the user
but at the same time handle all different tone types. This setting is
controlled by option 'stopTones', where 'none' will force the set of 7
basic tones, 'general' will add the three stop tones found in
STOP_TONES,
and 'explicit' will add one stop tone for each possible
vowel length i.e. short and long, making up the maximum count of 13.
Internally the set with explicit stop tones is used.

Sources

		
		Robert S. Bauer, Paul K. Benedikt: Modern Cantonese Phonology

		(摩登廣州話語音學). Walter de Gruyter, 1997, ISBN 3-11-014893-5.

		
		Robert S. Bauer: Hong Kong Cantonese Tone Contours. In: Studies in

		Cantonese Linguistics. Linguistic Society of Hong Kong, 1998,
ISBN 962-7578-04-5.

See also

		Modern Cantonese Phonology [http://books.google.de/books?id=QWNj5Yj6_CgC]

		Preview on Google Books.

Class

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

library/cjklib.reading.operator.KatakanaOperator.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

KatakanaOperator — Katakana

cjklib.reading.operator.KatakanaOperator is a simple, yet experimental
implementation of the Japanese Katakana writing.

Class

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

_static/up.png

library/cjklib.reading.operator.MandarinBrailleOperator.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

MandarinBrailleOperator — Braille for Mandarin

cjklib.reading.operator.MandarinBrailleOperator is an
implementation for phonetically transcribing Mandarin using the Braille system.

Specifics

In Braille the fifth tone of Mandarin Chinese is indicated without a tone
mark making a pure entity ambiguous if entities without tonal information
are mixed in. As by default Braille seems to be frequently written omitting
tone marks where unnecessary, the option missingToneMark controlling the
behaviour of absent tone marking is set to 'extended', allowing the
mixing of entities with fifth and with no tone. If lossless conversion is
needed, this option should be set to 'fifth', forbidding entities
without tonal information.

A small trick to get Braille output into an easily readable form on a normal
screen; do:

>>> import unicodedata
>>> input = u'⠅⠡ ⠝⠊ ⠙⠼ ⠊⠁⠓⠫⠰⠂'
>>> [unicodedata.name(char).replace('BRAILLE PATTERN DOTS-', 'P') \\
... for char in input]
['P13', 'P16', 'SPACE', 'P1345', 'P24', 'SPACE', 'P145', 'P3456', 'SPACE', 'P24', 'P1', 'P125', 'P1246', 'P56', 'P2']

Class

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

_static/minus.png

library/cjklib.dictionary.entry.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

cjklib.dictionary.entry — Entry factories for dictionaries

New in version 0.3.

Classes

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

library/cjklib.dictionary.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

cjklib.dictionary — High level dictionary access

New in version 0.3.

This module provides classes for easy access to well known CJK dictionaries.
Queries can be done using a headword, reading or translation.

Dictionary sources yield less structured information compared to other data
sources exposed in this library. Owing to this fact, a flexible system is
provided to the user.

Examples

Examples how to use this module:

		Create a dictionary instance:

>>> from cjklib.dictionary import CEDICT
>>> d = CEDICT()

		Get dictionary entries by reading:

>>> [e.HeadwordSimplified for e in
... d.getForReading('zhi dao', reading='Pinyin', toneMarkType='numbers')]
[u'制导', u'执导', u'指导', u'直到', u'直捣', u'知道']

		Change a search strategy (here search for a reading without tones):

>>> d = CEDICT(readingSearchStrategy=search.SimpleWildcardReading())
>>> d.getForReading('nihao', reading='Pinyin', toneMarkType='numbers')
[]
>>> d = CEDICT(readingSearchStrategy=search.TonelessWildcardReading())
>>> d.getForReading('nihao', reading='Pinyin', toneMarkType='numbers')
[EntryTuple(HeadwordTraditional=u'你好', HeadwordSimplified=u'你好', Reading=u'nǐ hǎo', Translation=u'/hello/hi/how are you?/')]

		Apply a formatting strategy to remove all initial and final slashes on
CEDICT translations:

>>> from cjklib.dictionary import *
>>> class TranslationFormatStrategy(format.Base):
... def format(self, string):
... return string.strip('/')
...
>>> d = CEDICT(
... columnFormatStrategies={'Translation': TranslationFormatStrategy()})
>>> d.getFor(u'东京')
[EntryTuple(HeadwordTraditional=u'東京', HeadwordSimplified=u'东京', Reading=u'Dōng jīng', Translation=u'Tōkyō, capital of Japan')]

		A simple dictionary lookup tool:

>>> from cjklib.dictionary import *
>>> from cjklib.reading import ReadingFactory
>>> def search(string, reading=None, dictionary='CEDICT'):
... # guess reading dialect
... options = {}
... if reading:
... f = ReadingFactory()
... opClass = f.getReadingOperatorClass(reading)
... if hasattr(opClass, 'guessReadingDialect'):
... options = opClass.guessReadingDialect(string)
... # search
... d = getDictionary(dictionary, entryFactory=entry.UnifiedHeadword())
... result = d.getFor(string, reading=reading, **options)
... # print
... for e in result:
... print e.Headword, e.Reading, e.Translation
...
>>> search('_taijiu', 'Pinyin')
茅台酒（茅臺酒） máo tái jiǔ /maotai (a Chinese liquor)/CL:杯[bei1],瓶[ping2]/

Entry factories

Similar to SQL interfaces, entries can be returned in different fashion. An
entry factory takes care of preparing the output. For this predefined
factories exist: cjklib.dictionary.entry.Tuple, which is very basic,
will return each entry as a tuple of its columns while the mostly used
cjklib.dictionary.entry.NamedTuple will return tuple objects
that are accessible by attribute also.

Formatting strategies

As reading formattings vary and many readings can be converted into each other,
a formatting strategy can be applied to return the expected format.
cjklib.dictionary.format.ReadingConversion provides an easy way
to convert the reading given by the dictionary into the user defined reading.
Other columns can also be formatted by applying a strategy,
see the example above.

A hybrid approach makes it possible to apply strategies on single cells, giving
a mapping from the cell name to the strategy, or a strategy that operates on the
entire result entry, by giving a mapping from None to the strategy. In the
latter case the formatting strategy needs to deal with the dictionary specific
entry structure:

>>> from cjklib.dictionary import *
>>> d = CEDICT(columnFormatStrategies={
... 'Translation': format.TranslationFormatStrategy()})
>>> d = CEDICT(columnFormatStrategies={
... None: format.NonReadingEntityWhitespace()})

Formatting strategies can be chained together using the
cjklib.dictionary.format.Chain class.

Search strategies

Searching in natural language data is a difficult process and highly depends on
the use case at hand. This task is provided by search strategies which
account for the more complex parts of this module. Strategies exist for the
three main parts of dictionary entries: headword, reading and translation.
Additionally mixed searching for a headword partially expressed by reading
information is supported and can augment the basic reading search. Several
instances of search strategies exist offering basic or more sophisticated
routines. For example wildcard searching is offered on top of many basic
strategies offering by default placeholders '_' for a single character, and
'%' for a match of zero to many characters.

Headword search strategies

Searching for headwords is the most simple among the three. Exact searches are
provided by class cjklib.dictionary.search.Exact. By default class
cjklib.dictionary.search.Wildcard is employed which offers
wildcard searches.

Reading search strategies

Readings have more complex and unique representations. Several classes are
provided here: cjklib.dictionary.search.Exact again can be used
for exact matches, and cjklib.dictionary.search.Wildcard
for wildcard searches. cjklib.dictionary.search.SimpleReading
and cjklib.dictionary.search.SimpleWildcardReading provide
similar searching for transcriptions as found e.g. in CEDICT.
A more complex search is provided by
cjklib.dictionary.search.TonelessWildcardReading
which offers search for readings missing tonal information.

Translation search strategies

A basic search is provided by
cjklib.dictionary.search.SingleEntryTranslation which
finds an exact entry in a list of entries separated by slashes (‘/‘). More
flexible searching is provided by
cjklib.dictionary.search.SimpleTranslation and
cjklib.dictionary.search.SimpleWildcardTranslation which take
into account additional information placed in parantheses.
These classes have even more special implementations adapted to formats
found in dictionaries CEDICT and HanDeDict.

More complex ones can be implemented on the basis of extending the underlying
table in the database, e.g. using full text search capabilities of the
database server. One popular way is using stemming algorithms for copying with
inflections by reducing a word to its root form.

Mixed reading search strategies

Special support for a string with mixed reading and headword entities is
provided by mixed reading search strategies. For example 'dui4 不 qi3'
will find all entries with headwords whose middle character out of three is
'不' and whose left character is read 'dui4' while the right character is
read 'qi3'.

Case insensitivity & Collations

Case insensitive searching is done through collations in the underlying database
system and for databases without collation support by employing function
lower(). A default case independent collation is chosen in the appropriate
build method in cjklib.build.builder.

SQLite by default has no Unicode support for string operations. Optionally
the ICU library can be compiled in for handling alphabetic non-ASCII
characters. The DatabaseConnector can register own Unicode functions if ICU
support is missing. Queries with LIKE will then use function lower(). This
compatibility mode has a negative impact on performance and as it is not needed
for dictionaries like EDICT or CEDICT it is disabled by default.

Functions

Classes

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

_static/file.png

library/cjklib.dbconnector.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

cjklib.dbconnector — SQL database access

A DatabaseConnector connects to one or more SQL databases. It provides four
simple methods for retrieving scalars or rows of data:

		selectScalar():
returns one single value

		selectRow():
returns only one entry with several columns

		selectScalars():
returns entries for a single column

		selectRows():
returns multiple entries for multiple columns

This class takes care to load the correct database(s). It provides for
attaching further databases and gives any program that depends on cjklib the
possibility to easily add own data in databases outside cjklib extending the
library’s information.

DatabaseConnector has a convenience function
getDBConnector() that loads
an instance with the proper settings for the given project. By default
settings for project 'cjklib' are chosen, but this behaviour can be
overwritten by passing a different project name:
getDBConnector(projectName='My Project'). Connection settings can also be
provided manually, omitting automatic searching. Multiple calls with the
same connection settings will return the same shared instance.

Example:

>>> from cjklib import dbconnector
>>> from sqlalchemy import select
>>> db = dbconnector.getDBConnector()
>>> db.selectScalar(select([db.tables['Strokes'].c.Name],
... db.tables['Strokes'].c.StrokeAbbrev == 'T'))
u'\u63d0'

DatabaseConnector is tested on SQLite and MySQL but should support most
other database systems through SQLAlchemy.

SQLite and Unicode

SQLite be default only provides letter case folding for alphabetic
characters A-Z from ASCII. If SQLite is built against ICU, Unicode
methods are used instead for LIKE and upper()/lower(). If ICU is
not compiled into the database system
DatabaseConnector can register own
methods. As this has negative impact on performance, it is disabled by
default. Compatibility support can be enabled by setting option
'registerUnicode' to True when given as configuration to __init__()
or getDBConnector() or alternatively can be
set as default in cjklib.conf.

Multiple database support

A DatabaseConnector instance is attached to a main database. Further
databases can be attached at any time, providing further tables. Tables from
the main database will shadow any other table with a similar name. A table
not found in the main database will be chosen from a database in the order
of their attachment.

The tables dictionary
allows simple lookup of table objects by short name, without the need of
knowing the full qualified name including the database specifier.
Existence of tables can be checked using
hasTable();
tables will only include
table information after the first access. All table names can be retrieved with
getTableNames().

Table lookup is designed with a stable data set in mind. Moving tables between
databases is not specially supported and while operations through the
cjklib.build module will update any information in the
tables
dictionary, manual creating and dropping of a table or changing its structure
will lead to the dictionary having obsolete information. This can be
circumvented by deleting keys forcing an update:

>>> del db.tables['my table']

Example:

>>> from cjklib.dbconnector import DatabaseConnector
>>> db = DatabaseConnector({'url': 'sqlite:////tmp/mydata.db',
... 'attach': ['cjklib']})
>>> db.tables['StrokeOrder'].fullname
'cjklib_0.StrokeOrder'

Discovery of attachable databases

DatabaseConnector has the ability to discover databases attaching them to
the main database. Specifying databases can be done in three ways:

		A full URL can be given denoting a single database, e.g.
'sqlite:////tmp/mydata.db'.

		Giving a directory will add any .db file as SQLite database, e.g.
'/usr/local/share/cjklib'.

		Giving a project name will prompt DatabaseConnector to check for
a project config file and add databases specified there and/or scan
that project’s default directories, e.g. 'cjklib'.

Functions

Classes

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

library/cjklib.reading.converter.JyutpingDialectConverter.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

JyutpingDialectConverter — Jyutping dialects

Class

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

library/cjklib.test.readingconverter.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

cjklib.test.readingconverter — Unit tests for reading.converter

Classes

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

_static/comment.png

library/cjklib.characterlookup.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

cjklib.characterlookup — Chinese character based functions

CharacterLookup

CharacterLookup provides access to lookup methods related to Han
characters.

The real system of CharacterLookup lies in the database beneath where all
relevant data is stored. So for nearly all methods this class needs access
to a database. Thus on initialisation of the object a connection to a
database is established, the logic for this provided by the
DatabaseConnector.

See the DatabaseConnector for supported database systems.

CharacterLookup will try to read the config file from the user’s home folder as
cjklib.conf or .cjklib.conf or /etc/cjklib.conf (Unix),
%APPDATA%/cjklib/cjklib.conf (Windows), or
/Library/Application Support/cjklib/ and $HOME/Library/Application
Support/cjklib/cjklib.conf (Mac OS X). If none is present it will try to open
a SQLite database stored as cjklib.db in the same folder by default. You can
override this behaviour by specifying additional parameters on creation of the
object.

Examples

The following examples should give a quick view into how to use this
package.

		Create the CharacterLookup object with default settings (read from
cjklib.conf or cjklib.db in same directory as default) and set the
character locale to traditional:

>>> from cjklib import characterlookup
>>> cjk = characterlookup.CharacterLookup('T')

		Get a list of characters, that are pronounced “국” in Korean:

>>> cjk.getCharactersForReading(u'국', 'Hangul')
[u'匊', u'國', u'局', u'掬', u'菊', u'跼', u'鞠', u'鞫', u'麯', u'麴']

		Check if a character is included in another character as a component:

>>> cjk.isComponentInCharacter(u'玉', u'宝')
True

		Get all Kangxi radical variants for Radical 184 (⾷) (under the traditional
locale):

>>> cjk.getKangxiRadicalVariantForms(184)
[u'⻞', u'⻟']

Character locale

During the development of characters in the different cultures character
appearances changed over time to that extent, that the handling of radicals,
character components and strokes needs to be distinguished, depending on the
locale.

To deal with this circumstance CharacterLookup works with a
character locale. Most of the methods of this class need a locale context.
In these cases the output of the method depends on the specified locale.

For example in the traditional locale 这 has 8 strokes, but in
simplified Chinese it has only 7, as the radical ⻌ has different stroke
counts, depending on the locale.

Glyphs

One feature of Chinese characters is the glyph form describing the visual
representation. This feature doesn’t need to be unique and so many
characters can be found in different writing variants e.g. character 福
(English: luck) which has numerous forms.

The Unicode Consortium does not include same characters of different
actual shape in the Unicode standard (called Z-variants), except a few
“double” entries which are included as to maintain backward compatibility.
In fact a code point represents an abstract character not defining any
visual representation. Thus a distinct appearance description including
strokes and stroke order cannot be simply assigned to a code point but one
needs to deal with the notion of glyphs, each representing a distinct
appearance to which a visual description can be applied.

Cjklib tries to offer a simple approach to handle different glyphs. As
character components, strokes and the stroke order depend on this variant,
methods dealing with this kind will ask for a glyph value to be
specified. In these cases the output of the method depends on the specified
shape.

Glyphs and character locales

Varying stroke count, stroke order or decomposition into character
components for different character locales is implemented using different
glyphs. For the example given above the entry 这 has two glyphs, one with
8 strokes, one with 7 strokes.

In most cases one might only be interested in a single visual appearance,
the “standard” one. This would be the one generally used in the specific
locale.

Instead of specifying a certain glyph most functions will allow for
passing of a character locale. Giving the locale will apply the default
glyph given by the mapping defined in the database which can be obtained
by calling getDefaultGlyph().

More complex relations as which of several glyphs for a given character
are used in a given locale are not covered.

Kangxi radical functions

Using the Unihan database queries about the Kangxi radical of characters can
be made.
It is possible to get a Kangxi radical for a character or lookup all
characters for a given radical.

Unicode has extra code points for radical forms (e.g. ⾔), here called
Unicode radical forms, and radical variant forms (e.g. ⻈), here called
Unicode radical variants. These characters should be used when explicitly
referring to their function as radicals.
For most of the radicals and variants their exist complementary character
forms which have the same appearance (e.g. 言 and 讠) and which shall be
called equivalent characters here.

Mapping from one to another side is not trivially possible, as some forms
only exist as radical forms, some only as character forms, but from their
meaning used in the radical context (called isolated radical characters
here, e.g. 訁 for Kangxi radical 149).

Additionally a one to one mapping can’t be guaranteed, as some forms have
two or more equivalent forms in another domain, and mapping is highly
dependant on the locale.

CharacterLookup provides methods for dealing with this different kinds of
characters and the mapping between them.

Character decomposition

Many characters can be decomposed into two or more components, that again
are Chinese characters. This fact can be used in many ways, including
character lookup, finding patterns for font design or studying characters.
Even the stroke order and stroke count can be deduced from the stroke
information of the character’s components.

A character decomposition is depends on the appearance of the
character, a glyph, so a glyph index needs to be given (will by default be
chosen following the current character locale) when looking at a
decomposition into components.

More points render this task more complex: decomposition into one set of
components is not distinct, some characters can be broken down into
different sets. Furthermore sometimes one component can be given, but the
other component will not be encoded as a character in its own right.

These components again might be characters that contain further components
(again not distinct ones), thus a complex decomposition in several steps is
possible.

The basis for the character decomposition lies in the database, where all
decompositions are stored, using Ideographic Description Sequences
(IDS). These sequences consist of Unicode IDS operators and characters
to describe the structure of the character. There are
binary IDS operators to describe decomposition into two components (e.g.
⿰ for one component left, one right as in 好: ⿰女子) or
trinary IDS operators for decomposition into three components (e.g. ⿲
for three components from left to right as in 辨: ⿲⾟刂⾟). Using
IDS operators it is possible to give a basic structural information, that
for example is sufficient in many cases to derive an overall stroke order
from two single sets of stroke orders, namely that of the components.
Further more it is possible to look for redundant information in different
entries and thus helps to keep the definition data clean.

This class provides methods for retrieving the basic partition entries,
lookup of characters by components and decomposing as a tree from the
character as a root down to the minimal components as leaf nodes.

See also

		Character decomposition guidelines [http://code.google.com/p/cjklib/wiki/Decomposition]

		Discussion on the project’s wiki.

Strokes

Chinese characters consist of different strokes as basic parts. These
strokes are written in a mostly distinct order called the stroke order
and have a distinct stroke count.

The stroke order in the writing of Chinese characters is important e.g.
for calligraphy or students learning new characters and is normally fixed as
there is only one possible stroke order for each character. Further more
there is a fixed set of possible strokes and these strokes carry names.

As with character decomposition the stroke order and stroke count
depends on the actual rendering of the character, the glyph. If no
specific glyph is specified, it will be deduced from the current
character locale.

The set of strokes as defined by Unicode in block 31C0-31EF is supported.
Simplifying subsets might be supported in the future.

TODO: About the different classifications of strokes

Stroke names and abbreviated names

Additionally to the encoded stroke forms, stroke names and
abbreviated stroke names can be used to conveniently refer to strokes.
Currently supported are Mandarin names (following Unicode), and
abbreviated stroke names are built by taking the first character of the
Pinyin spelling of each syllable, e.g. HZZZG for 橫折折折鉤 (i.e.
㇡, U+31E1).

Inconsistencies

The stroke order of some characters is disputed in academic fields. A
current workaround would be adding another glyph definition, showing the
alternative order.

TODO: About plans of cjklib how to support different views on the stroke
order

Readings

See module cjklib.reading for a detailed introduction into
character readings.

CharacterLookup provides to methods for accessing character readings:
CharacterLookup.getReadingForCharacter() will return all readings known
for the given character. CharacterLookup.getCharactersForReading() will
return all characters known to have the given reading.

The database offers mappings for the following readings:

		Hanyu Pinyin

		Jyutping

		IPA for Shanghainese

		Hangul

Most other readings are available by using one of the above readings as
bridge.

Character domains

Unicode encodes Chinese characters for all languages that make use of them,
but neither of those writing system make use of the whole spectrum encoded.
While it is difficult, if not impossible, to make a clear distinction which
characters are used in on system and which not, there exist authorative
character sets that are widely used. Following one of those character sets
can decrease the amount of characters in question and focus on those
actually used in the given context.

In cjklib this concept is implemented as character domain and if a
CharacterLookup instance is given a
character domain, then its reported results are limited to the
characters therein.

For example limit results to the character encoding BIG5, which encodes
traditional Chinese characters:

>>> from cjklib import characterlookup
>>> cjk = characterlookup.CharacterLookup('T', 'BIG5')

Available character domains can be checked via
getAvailableCharacterDomains().
Special character domain Unicode represents the whole set of
Chinese characters encoded in Unicode.

See also

		Radicals [http://en.wikipedia.org/wiki/Radical_(Chinese_character)]

		Wikipedia on radicals.

		Z-variants [http://www.unicode.org/reports/tr38/tr38-5.html#N10211]

		Unicode Standard Annex #38, Unicode Han Database (Unihan), 3.7 Variants

Surrogate pairs

Python supports UCS-2 and UCS-4 for Unicode strings. The former is a 2-byte
implementation called narrow build, while the latter uses 4 bytes to store
Unicode characters and is called a wide build respectively. The latter can
directly store any character encoded by Unicode, while UCS-2 only supports
the 16-bit range called the Basic Multilingual Plane (BMP). By default
Python is compiled with UCS-2 support only and some versions, e.g. the one for
Windows, have no publicly available version supporting UCS-4.

To circumvent the fact of only being able to represent the first 65536
codepoints of Unicode Python narrow builds support surrogate pairs as
found in UTF-16 to represent characters above the 0xFFFF codepoint. Here a
logical character from a codepoint above 0xFFFF is represented by two
physical characters. The most significant surrogate lies between 0xD800
and 0xDBFF while the least significant surrogate lies between 0xDC00
and 0xDFFF. Cjklib supports surrogate pairs and will return a string of
length 2 for characters outside the BMP for narrow builds. Users need
to notice that the assertion len(char) == 1 doesn’t hold here anymore.

See also

		PEP 261 [http://www.python.org/dev/peps/pep-0261/]

		Support for “wide” Unicode characters

		Encoding of characters outside the BMP [http://en.wikipedia.org/wiki/UTF-16/UCS-2#Encoding_of_characters_outside_the_BMP]

		Wikipedia on UTF16/UCS-2.

Classes

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

library/cjklib.reading.operator.MandarinIPAOperator.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

MandarinIPAOperator — IPA for Cantonese

cjklib.reading.operator.MandarinIPAOperator is an implementation
of a transcription of Standard Mandarin into the
International Phonetic Alphabet (IPA).

Specifics

Features:

		Tones can be marked either with tone numbers (1-4), tone contour
numbers (e.g. 214), IPA tone bar characters or IPA diacritics,

		support for low third tone (1/2 third tone) with tone contour 21,

		four levels of the neutral tone for varying stress depending on the
preceding syllable and

		splitting of syllables into onset and rhyme using method
getOnsetRhyme().

Tones

Tones in IPA can be expressed using different schemes. The following schemes
are implemented here:

		Numbers, regular tone numbers from 1 to 5 for first tone to fifth
(qingsheng),

		ChaoDigits, numbers displaying the levels of tone contours, e.g.
214 for the regular third tone,

		IPAToneBar, IPA modifying tone bar characters, e.g. ɕi˨˩˦,

		Diacritics, diacritical marks and finally

		None, no support for tone marks

Unlike other operators for Mandarin, distinction is made for six different
tonal occurrences. The third tone is affected by tone sandhi and basically
two different tone contours exist. Therefore
getTonalEntity() and
splitEntityTone()
work with string representations as tones defined in
TONES.
Same behaviour as found in other operators for Mandarin can be
achieved by simply using the first character of the given string:

>>> from cjklib.reading import operator
>>> ipaOp = operator.MandarinIPAOperator(toneMarkType='ipaToneBar')
>>> syllable, toneName = ipaOp.splitEntityTone(u'mən˧˥')
>>> tone = int(toneName[0])

The implemented schemes render tone information differently. Mapping might
lose information so a full back-transformation can not be guaranteed.

Source

		Yuen Ren Chao: A Grammar of Spoken Chinese. University of California
Press, Berkeley, 1968, ISBN 0-520-00219-9.

Class

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

library/cjklib.reading.operator.CantoneseYaleOperator.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

CantoneseYaleOperator — Cantonese Yale

cjklib.reading.operator.CantoneseYaleOperator is a mature
implementation of the Yale transcription for Cantonese. It’s one of the major
romanisations used for Cantonese and frequently found in education.

Features:

		tones marked by either diacritics or numbers,

		choice between high level and high falling tone for number marks,

		guessing of input form (reading dialect) and

		splitting of syllables into onset, nucleus and coda.

Specifics

High Level vs. High Falling Tone

Yale distinguishes two tones often subsumed under one: the high level tone
with tone contour 55 as given in the commonly used pitch model by Yuen Ren
Chao and the high falling tone given as pitch 53 (as by Chao), 52 or 51
(Bauer and Benedikt, chapter 2.1.1 pp. 115).
Many sources state that these two tones aren’t distinguishable anymore in
modern Hong Kong Cantonese and thus are subsumed under one tone in some
romanisation systems for Cantonese.

In the abbreviated form of the Yale romanisation that uses numbers to
represent tones this distinction is not made. The mapping of the tone number
1 to either the high level or the high falling tone can be given by the
user and is important when conversion is done involving this abbreviated
form of the Yale romanisation. By default the high level tone will be used
as this primary use is indicated in the given sources.

Placement of tones

Tone marks, if using the standard form with diacritics, are placed according
to Cantonese Yale rules (see
getTonalEntity()).
The CantoneseYaleOperator by default tries to work around misplaced
tone marks though to ease handling of malformed input.
There are cases, where this generous behaviour leads to
a different segmentation compared to the strict interpretation. No means are
implemented to disambiguate between both solutions. The general behaviour is
controlled with option 'strictDiacriticPlacement'.

Sources

		Stephen Matthews, Virginia Yip: Cantonese: A Comprehensive Grammar.
Routledge, 1994, ISBN 0-415-08945-X.

		Robert S. Bauer, Paul K. Benedikt: Modern Cantonese Phonology
(摩登廣州話語音學). Walter de Gruyter, 1997, ISBN 3-11-014893-5.

See also

		Cantonese: A Comprehensive Grammar [http://books.google.de/books?id=czbGJLu59S0C]

		Preview on Google Books.

		Modern Cantonese Phonology [http://books.google.de/books?id=QWNj5Yj6_CgC]

		Preview on Google Books.

Class

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

library/cjklib.reading.operator.JyutpingOperator.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

JyutpingOperator — Jyutping

cjklib.reading.operator.JyutpingOperator is a mature
implementation of the modern Jyutping romanisation for Cantonese
developed by the Linguistic Society of Hong Kong (LSHK). Jyutping is
frequently used online.

Specifics

See also

		Jyutping [http://lshk.ctl.cityu.edu.hk/cantonese.php]

		The Linguistic Society of Hong Kong Cantonese Romanization Scheme

Class

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

library/cjklib.reading.converter.WadeGilesDialectConverter.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

WadeGilesDialectConverter — Wade-Giles dialects

Specifics

Examples

		Convert to superscript numbers (default):

		>>> from cjklib.reading import ReadingFactory
>>> f = ReadingFactory()
>>> f.convert(u'Ssŭ1ma3 Ch’ien1', 'WadeGiles', 'WadeGiles',
... sourceOptions={'toneMarkType': 'numbers'})
u'Ss\u016d\xb9-ma\xb3 Ch\u2019ien\xb9'

		Convert form without diacritic to standard form:

		>>> f.convert(u'ch’eng', 'WadeGiles', 'WadeGiles',
... sourceOptions={'diacriticE': 'e'})
u'ch\u2019\xeang'

		Convert forms with lost umlaut:

		>>> f.convert(u'hsu³-hun¹', 'WadeGiles', 'WadeGiles',
... sourceOptions={'umlautU': 'u'})
u'hs\xfc\xb3-hun\xb9'

See WadeGilesOperator for more examples.

Class

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

_static/down.png

library/cjklib.reading.operator.ShanghaineseIPAOperator.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

ShanghaineseIPAOperator — IPA for Shanghainese

cjklib.reading.operator.ShanghaineseIPAOperator is an
implementation of a transcription of Shanghainese into the
International Phonetic Alphabet (IPA).

Features:

		Tones can be given as tone contour numbers (e.g. 55, or superscript ⁵⁵),
or IPA tone bar characters,

		strict tonal rules can be enforced depending the syllable’s initial being
voiced or voiceless and the final having a glottal stop,

		splitting of syllables into onset and rhyme.

Class

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

library/cjklib.reading.converter.CantoneseYaleDialectConverter.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

CantoneseYaleDialectConverter — Cantonese Yale dialects

Specifics

High Level vs. High Falling Tone

As described in CantoneseYaleOperator
the abbreviated form of the Cantonese Yale romanisation system which uses
numbers as tone marks makes no distinction between the high level tone and
the high falling tone. On conversion to the form with diacritical marks it
is thus important to choose the correct mapping. This can be configured by
applying a special instance of a
CantoneseYaleOperator
(or telling the ReadingFactory which operator to use).

Example:

>>> from cjklib.reading import ReadingFactory
>>> f = ReadingFactory()
>>> f.convert(u'gwong2jau1wa2', 'CantoneseYale', 'CantoneseYale',
... sourceOptions={'toneMarkType': 'numbers',
... 'yaleFirstTone': '1stToneFalling'})
u'gwóngjàuwá'

Class

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

library/cjklib.reading.converter.ShanghaineseIPADialectConverter.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

ShanghaineseIPADialectConverter — Shanghainese IPA dialects

Class

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

library/cjklib.dictionary.format.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

cjklib.dictionary.format — Format strategies for dictionary entries

New in version 0.3.

Classes

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

library/cjklib.test.characterlookup.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

cjklib.test.characterlookup — Unit tests for characterlookup

Classes

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

library/cjklib.build.cli.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

cjklib.build.cli — Build command line interface

See also

		buildcjkdb — Build database

		Documentation on the CLI

Classes

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

library/cjklib.dictionary.search.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

cjklib.dictionary.search — Search strategies for dictionaries

New in version 0.3.

Functions

Classes

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

library/cjklib.reading.converter.PinyinBrailleConverter.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

PinyinBrailleConverter – Hanyu Pinyin to Braille

Specifics

Conversion from Braille to Pinyin is ambiguous. The syllable pairs mo/me,
e/o and le/lo will yield an AmbiguousConversionError.
Furthermore conversion from Pinyin to Braille is lossy if tones are omitted,
which seems to be frequent in writing Braille for Chinese.
Braille doesn’t mark the fifth tone, so converting back to Pinyin will
give syllables without a tone mark the fifth tone, changing originally unknown
ones. See MandarinBrailleOperator.

Examples

Convert from Pinyin to Braille using the
ReadingFactory:

>>> from cjklib.reading import ReadingFactory
>>> f = ReadingFactory()
>>> f.convert(u'Qǐng nǐ děng yīxià!', 'Pinyin', 'MandarinBraille',
... targetOptions={'toneMarkType': 'None'})
u'\u2805\u2821 \u281d\u280a \u2819\u283c \u280a\u2813\u282b\u2830\u2802'

See also

		How is Chinese written in Braille? [http://www.braille.ch/pschin-e.htm]

		Rules

		Chinese Braille [http://en.wikipedia.org/wiki/Chinese_braille]

		Article on Wikipedia

Class

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

library/cjklib.cjknife.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

cjklib.cjknife — Command line interface

See also

		cjknife — Command Line Interface

		Documentation on the CLI

Functions

Classes

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

library/cjklib.reading.converter.GRPinyinConverter.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

GRPinyinConverter — Gwoyeu Romatzyh to Pinyin

Specifics

Features:

		configurable mapping of options neutral tone when converting from GR,

		conversion of abbreviated forms of GR.

Upper- or lowercase will be transfered between syllables, no special
formatting according to anyhow defined standards will be guaranteed.
Upper-/lowercase will be identified according to three classes: either the
whole syllable is uppercase, only the initial letter is uppercase
(titlecase) or otherwise the whole syllable is assumed being lowercase. For
entities of single latin characters uppercase has precedence over titlecase,
e.g. I will convert to YI from Gwoyeu Romatzyh to Pinyin, not to
Yi.

Limitations

Conversion cannot in general be done in a one-to-one manner.
Gwoyeu Romatzyh (GR) gives the etymological tone for a syllable in
neutral tone while Pinyin doesn’t. Thus converting neutral tone syllables
from Pinyin to GR will fail as the etymological tone is unknown to the
operator.

While tones in GR carry more information, r-coloured syllables
(Erlhuah) are rendered the way they are pronounced thus loosing
information about the underlying syllable. Converting those forms to Pinyin
is not always possible as for example jieel will raise an
L{AmbiguousConversionError} as it stems from jǐ, jiě and jǐn.
Having the original string in Chinese characters might help to disambiguate.

Neutral tone

As described above, converting the neutral tone from Pinyin to GR fails.
Converting to Pinyin will lose knowledge about the etymological tone, and in
the case of optional neutral tones it has to be decided whether the
neutral tone version or the etymological tone is chosen, as Pinyin can only
display one. This can be controlled using option
'grOptionalNeutralToneMapping'.

Class

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

library/cjklib.reading.operator.WadeGilesOperator.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

WadeGilesOperator – Wade-Giles

cjklib.reading.operator.WadeGilesOperator is an implementation
of the Mandarin Chinese romanisation Wade-Giles. It was in common use before
being replaced by Pinyin.

Features:

		tones marked by either superscript or plain digits,

		flexibility with derived writing, e.g. szu instead of ssu,

		alternative representation of characters ŭ and ê,

		handling of omissions of umlaut ü with resulting ambiguity,

		alternative marking of neutral tone (qingsheng) with either no mark
or digits zero or five,

		configurable apostrophe for marking aspiration,

		placement of hyphens between syllables and

		guessing of input form (reading dialect).

Specifics

Alterations

While the Wade-Giles romanisation system itself is a modification by H. A.
Giles, some further alterations exist, requiring an adaptable solution to
parse transliterated text.

Diacritics

While non-retroflex zero final syllables tzŭ, tz’ŭ and ssŭ carry a
breve on top of the u in the standard realization of Wade-Giles, it is
often left out while creating no ambiguity. In the same fashion finals
-ê, -ên and -êng, also syllable êrh, carry a circumflex over the
e which often is not written, and no ambiguity arises as no equivalent
forms with a plain e exist. These forms can be handled by setting options
'zeroFinal' to 'u' and 'diacriticE' to 'e'.

Different to that, leaving out the umlaut on the u for finals -ü,
-üan, -üeh and -ün does create forms where back-conversion for some
cases is not possible as an equivalent vowel u form exists. Unambiguous
forms consist of initial hs- and y- (exception yu) and/or finals
-üeh and -üo, the latter being dialect forms not in use today. So
while for example hsu can be unambiguously converted back to its correct
form hsü, it is not clear if ch’uan is the wanted form or if it stems
from ch’üan, its diacritics being mangled. This reporting is done by
checkPlainEntity().
The omission of the umlaut can be controlled by setting
'umlautU' to 'u'.

Others

For the non-retroflex zero final forms tzŭ, tz’ŭ and ssŭ the latter
is sometimes changed to szŭ. The operator can be configured by setting
the Boolean option 'useInitialSz'.

The neutral tone by default is not marked. As sometimes the digits zero or
five are used, they can be set by option 'neutralToneMark'.

The apostrophe marking aspiration can be set by 'wadeGilesApostrophe'.

Tones are by default marked with superscript characters. This can be
controlled by option 'toneMarkType'.

Recovering omitted apostrophes for aspiration is not possible as for all
cases there exists ambiguity. No means are provided to warn for possible
missing apostrophes. In case of uncertainty check for initials p-, t-,
k-, ch-, ts and tz.

Examples

The WadeGilesDialectConverter allows
conversion between said forms.

		Restore diacritics:

		>>> from cjklib.reading import ReadingFactory
>>> f = ReadingFactory()
>>> f.convert(u"K’ung³-tzu³", 'WadeGiles', 'WadeGiles',
... sourceOptions={'zeroFinal': 'u'})
u'K\u2019ung\xb3-tz\u016d\xb3'
>>> f.convert(u"k’ai¹-men²-chien⁴-shan¹", 'WadeGiles', 'WadeGiles',
... sourceOptions={'diacriticE': 'e'})
u'k\u2019ai\xb9-m\xean\xb2-chien\u2074-shan\xb9'
>>> f.convert(u"hsueh²", 'WadeGiles', 'WadeGiles',
... sourceOptions={'umlautU': 'u'})
u'hs\xfceh\xb2'

		But:

		>>> f.convert(u"hsu⁴-ch’u³", 'WadeGiles', 'WadeGiles',
... sourceOptions={'umlautU': 'u'})
Traceback (most recent call last):
...
cjklib.exception.AmbiguousConversionError: conversion for entity 'ch’u³' is ambiguous: ch’u³, ch’ü³

		Guess non-standard form:

		>>> from cjklib.reading import operator
>>> operator.WadeGilesOperator.guessReadingDialect(
... u"k'ai1-men2-chien4-shan1")
{'zeroFinal': u'\u016d', 'diacriticE': u'e', 'umlautU': u'\xfc', 'toneMarkType': 'numbers', 'useInitialSz': False, 'neutralToneMark': 'none', 'wadeGilesApostrophe': "'"}

Class

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

library/cjklib.reading.converter.JyutpingYaleConverter.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

JyutpingYaleConverter – Jyutping to Cantonese Yale

Specifics

Upper- or lowercase will be transfered between syllables, no special
formatting according to anyhow defined standards will be guaranteed.
Upper-/lowercase will be identified according to three classes: either the
whole syllable is uppercase, only the initial letter is uppercase
(titlecase) or otherwise the whole syllable is assumed being lowercase. For
entities of single latin characters uppercase has precedence over titlecase,
e.g. E5 will convert to ÉH in Cantonese Yale, not to Éh.

High Level vs. High Falling Tone

As described in CantoneseYaleOperator the
Cantonese Yale romanisation system makes a distinction between the
high level tone and the high falling tone in general while Jyutping does not.
On conversion it is thus important to choose the correct mapping.
This can be configured by applying the option
yaleFirstTone when construction the converter (or telling the
ReadingFactory which converter to use).

Example:

>>> from cjklib.reading import ReadingFactory
>>> f = ReadingFactory()
>>> f.convert(u'gwong2zau1waa2', 'Jyutping', 'CantoneseYale',
... yaleFirstTone='1stToneFalling')
u'gwóngjàuwá'

Class

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

library/cjklib.exception.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

cjklib.exception — Error classes

Exceptions

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

library/cjklib.reading.converter.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

cjklib.reading.converter — Conversion between character readings

Architecture

The basic method is convert()
which converts one input string from one reading to another.

The method getDefaultOptions()
will return the conversion default settings.

What gets converted

The conversion process uses the
ReadingOperator for the source reading to
decompose the given string into the single entities. The decomposition
contains reading entities and entities that don’t represent any
pronunciation. While the goal is to convert included reading entities to the
target reading, some convertes might decide to also convert non-reading
entities. This can be for example delimiters like apostrophes that differ
between romanisations or punctuation marks that have a defined
representation in the target system, e.g. Braille.

Errors

By default conversion won’t stop on entities that closely resemble other
reading entities but itself are not valid. Those will turn up unchanged in
the result and can cause a CompositionError
when the target operator decideds that it is impossible to link a converted
entity with a non-converted one as it would make it impossible to later
determine the entity boundaries.
Most of those errors will probably result from bad input
that fails on conversion. This can be solved by telling the source operator
to be strict on decomposition (where supported) so that the error will
be reported beforehand. The followig example tries to convert xiǎo tōu
(“thief”), misspelled as *xiǎo tō:

>>> from cjklib.reading import ReadingFactory
>>> f = ReadingFactory()
>>> print f.convert(u'xiao3to1', 'Pinyin', 'GR',
... sourceOptions={'toneMarkType': 'numbers'})
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
...
cjklib.exception.CompositionError: Unable to delimit non-reading entity 'to1'
>>> print f.convert(u'xiao3to1', 'Pinyin', 'GR',
... sourceOptions={'toneMarkType': 'numbers',
... 'strictSegmentation': True})
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
...
cjklib.exception.DecompositionError: Segmentation of 'to1' not possible or invalid syllable

Not being strict results in a lazy conversion, which might fail in some
cases as shown above. u'xiao3 to1' (with a space in between) though will
work for the lazy way ('to1' not being converted), while the strict
version will still report the wrong *to1.

Other errors that can arise:

		AmbiguousDecompositionError,
if the source string can not be decomposed unambigiuously,

		ConversionError,
e.g. if the target system doesn’t support a feature given in the source
string, and

		AmbiguousConversionError, if a given entity can be
mapped to more than one entity in the target reading.

Bridge

Conversions between two Readings can be made using a third reading
if no direct conversion is defined. This reading is called a
bridge reading and is implemented in
BridgeConverter. Using the routines
from the ReadingFactory will automatically employ
bridges if needed.

Examples

Convert a string from Jyutping to Cantonese Yale:

>>> from cjklib.reading import ReadingFactory
>>> f = ReadingFactory()
>>> f.convert('gwong2jau1waa2', 'Jyutping', 'CantoneseYale')
u'gwóngyāuwá'

This is also possible creating a converter instance explicitly using the
factory:

>>> jyc = f.createReadingConverter('GR', 'Pinyin')
>>> jyc.convert('Woo.men tingshuo yeou "Yinnduhshyue", "Aijyishyue"')
u'Wǒmen tīngshuō yǒu "Yìndùxué", "Āijíxué"'

Convert between different dialects of the same reading Wade-Giles:

>>> f.convert(u'kuo3-yü2', 'WadeGiles', 'WadeGiles',
... sourceOptions={'toneMarkType': 'numbers'},
... targetOptions={'toneMarkType': 'superscriptNumbers'})
u'kuo³-yü²'

See PinyinDialectConverter for more examples.

Reading conversions

		Mandarin Chinese
		cjklib.reading.converter.PinyinDialectConverter — Hanyu Pinyin dialects

		cjklib.reading.converter.WadeGilesDialectConverter — Wade-Giles dialects

		cjklib.reading.converter.PinyinWadeGilesConverter — Hanyu Pinyin to Wade-Giles

		cjklib.reading.converter.GRDialectConverter — Gwoyeu Romatzyh dialects

		cjklib.reading.converter.GRPinyinConverter — Gwoyeu Romatzyh to Pinyin

		cjklib.reading.converter.PinyinIPAConverter — Hanyu Pinyin to IPA

		cjklib.reading.converter.PinyinBrailleConverter — Pinyin to Braille

		Cantonese
		cjklib.reading.converter.CantoneseYaleDialectConverter — Cantonese Yale dialects

		cjklib.reading.converter.JyutpingDialectConverter — Jyutping dialects

		cjklib.reading.converter.JyutpingYaleConverter — Jyutping to Cantonese Yale

		Shanghainese
		cjklib.reading.converter.ShanghaineseIPADialectConverter — Shanghainese IPA dialects

Base classes

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

library/cjklib.reading.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

cjklib.reading — Character reading based functions

This includes
ReadingOperators used
to handle basic operations like decomposing strings written in a reading
into their basic entities (e.g. syllables) and for some languages
getting tonal information, syllable onset and rhyme and other features.
Furthermore it includes ReadingConverter
classes which offer the conversion of strings from one reading to another.

All basic functionality can be accessed using the
ReadingFactory which provides factory methods
for creating instances of the supplied classes and also acts as a façade
for the functions defined there.

Examples

The following examples should give a quick view into how to use this
package.

		Create the ReadingFactory object with default settings
(read from cjklib.conf or using cjklib.db in module directory as default):

>>> from cjklib.reading import ReadingFactory
>>> f = ReadingFactory()

		Create an operator for Mandarin romanisation Pinyin:

>>> pinyinOp = f.createReadingOperator('Pinyin')

		Construct a Pinyin syllable with second tone:

>>> pinyinOp.getTonalEntity(u'han', 2)
u'hán'

		Segments the given Pinyin string into a list of syllables:

>>> pinyinOp.decompose(u"tiān'ānmén")
[u'tiān', u''', u'ān', u'mén']

		Do the same using the factory class as a façade to easily access functions
provided by those classes in the background:

>>> f.decompose(u"tiān'ānmén", 'Pinyin')
[u'tiān', u''', u'ān', u'mén']

		Convert the given Gwoyeu Romatzyh syllables to their pronunciation in IPA:

>>> f.convert('liow shu', 'GR', 'MandarinIPA')
u'liəu˥˩ ʂu˥˥'

Readings

Han-characters give only few visual hints about how they are pronounced. The big
number of homophones further increases the problem of deriving the character’s
actual pronunciation from the given glyph. This module implements a framework
and desirable functionality to deal with the characteristics of
character readings.

From a programmatical view point readings in languages making use of Chinese
characters differ in many ways. Some use the Roman alphabet, some have tonal
information, some can be mapped character-wise, some map from one Chinese
character to a sequence of characters in the target system while some map only
to one character.

One mayor group in the topic of readings are romanisations, which are
transcriptions into the Roman alphabet (Cyrillic respectively). Romanisations
of tonal languages are a subgroup that ask for even more detailed functions. The
interface implemented here tries to grasp similar factors on different
abstraction levels while trying to maintain flexibility.

In the context of this library the term reading will refer to two things: the
realisation of expressing the pronunciation (e.g. the specific romanisation) on
the one hand, and the specific reading of a given character on the other hand.

Technical implementation

While module cjklib.characterlookup includes the functions for
mapping a character to its potential reading, module cjklib.reading
is specialised on all functionality that is primarily connected to
the reading of characters.

The main functions implemented here provide ways of handling text written in a
reading and converting between different readings.

Handling text written in a reading

Text written in a character reading is special to other text, as it consists
of entities which map to corresponding Chinese characters. They can be deduced
from the text through breaking the whole string down into a sequence of single
entities. This functionality is provided by all operators on readings by
providing the interface ReadingOperator.
The process of breaking input down (called decomposition) can be reversed by
composing the single entities to a string.

Many ReadingOperators
provide additional functions, each depending on the characteristics of
the implemented reading.
For readings of tonal languages for example they might allow to question
the tone of the given reading of a character.

Converting between readings

The second part provided are means to provide support for conversion between
different readings.

What all CJK languages seem to have in common is their irreversibility of the
mapping from a character to its reading, as these languages are rich in
homophones. Thus the highest degree in information for a text is obtained by the
pair of characters and their reading (aside from the meaning).

If one has a text written in reading A and one wants to obtain the text written
in B instead then it is not feasible to obtain the reading from the
corresponding characters even if present, as many characters have several
pronunciations. Instead one wants to convert the reading through conversion from
A to B.

Simple means to convert between readings is provided by classes implementing
ReadingConverter. This conversion might
neither be surjective nor injective, and several
exceptions can occur.

Configurable reading dialect

Many readings come in specific representations even if standardised. This may
start with simple difference in type setting (e.g. punctuation) or include
special entities and derivatives.

Instead of selecting one default form as a global standard cjklib lets the user
choose the preferred dialect, though still trying to offer good default values.
It does so by offering a wide range of options for handling and conversion of
readings. These options can be given optionally in many places and are handed
down by the system to the component knowing about this specific configuration
option. Furthermore each class implements a method that states which options it
uses by default.

A special notion of dialect converters is used for
ReadingConverter classes that convert between
two different representations of the same reading. These allow flexible
switching between reading dialects.

Limitations of reading conversion

While reading conversion allows for flexible handling of any reading, there are
corner cases and limitations that arise from the difference in the readings’
designs.
The following list tries to name limitations for some conversions, it is not
meant to be exhaustive though. The best way to be really sure about what can be
mapped and what not, it to actually try it out. Missing mappings for some
syllables will not be listed here.

		Jyutping to Cantonese Yale: Jyutping was designed for Cantonese as
spoken in Hong Kong. While the high falling tone is lost there, it still
exists in the area of Guangzhou. The first tone of Jyutping will either
map to the high level tone (default) or the high falling tone.

		Pinyin to Wade-Giles: Wade-Giles distinguishes between finals o
and ê while Pinyin only writes e (ê for the syllable itself). A
mapping is thus ambiguous.

		GR to Pinyin: GR transcribes Erhua sound such that the
etymological syllable gets lost. A mapping to Pinyin is thus ambiguous.

		Pinyin to GR: GR transcribes the etymological tone for a fifth tone,
while Pinyin does not. A mapping cannot fill in the missing information.

		IPA: IPA for Mandarin and Cantonese needs to transcribe tonal changes
and other co-articulation features, which most of the romanisations don’t
cover. A mapping is often either done as approximation, or is not possible
at all.

Classes

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

library/cjklib.test.build.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

cjklib.test.build — Unit tests for build

Classes

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

library/cjklib.reading.operator.HangulOperator.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

HangulOperator — Hangul

cjklib.reading.operator.HangulOperator is a simple, yet experimental
implementation of the Korean Hangul alphabet.

Class

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

library/cjklib.reading.converter.PinyinDialectConverter.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

PinyinDialectConverter — Hanyu Pinyin dialects

Specifics

Examples

The following examples show how to convert between different representations
of Pinyin.

		Create the Converter and convert from standard Pinyin to Pinyin with
tones represented by numbers:

>>> from cjklib.reading import *
>>> targetOp = operator.PinyinOperator(toneMarkType='numbers')
>>> pinyinConv = converter.PinyinDialectConverter(
... targetOperators=[targetOp])
>>> pinyinConv.convert(u'hànzì', 'Pinyin', 'Pinyin')
u'han4zi4'

		Convert Pinyin written with numbers, the ü (u with umlaut) replaced
by character v and omitted fifth tone to standard Pinyin:

>>> sourceOp = operator.PinyinOperator(toneMarkType='numbers',
... yVowel='v', missingToneMark='fifth')
>>> pinyinConv = converter.PinyinDialectConverter(
... sourceOperators=[sourceOp])
>>> pinyinConv.convert('nv3hai2zi', 'Pinyin', 'Pinyin')
u'nǚháizi'

		Or more elegantly:

>>> f = ReadingFactory()
>>> f.convert('nv3hai2zi', 'Pinyin', 'Pinyin',
... sourceOptions={'toneMarkType': 'numbers', 'yVowel': 'v',
... 'missingToneMark': 'fifth'})
u'nǚháizi'

		Decompose the reading of a dictionary entry from CEDICT into syllables
and convert the ü-vowel and forms of Erhua sound:

>>> pinyinFrom = operator.PinyinOperator(toneMarkType='numbers',
... yVowel='u:', Erhua='oneSyllable')
>>> syllables = pinyinFrom.decompose('sun1nu:r3')
>>> print syllables
['sun1', 'nu:r3']
>>> pinyinTo = operator.PinyinOperator(toneMarkType='numbers',
... Erhua='twoSyllables')
>>> pinyinConv = converter.PinyinDialectConverter(
... sourceOperators=[pinyinFrom], targetOperators=[pinyinTo])
>>> pinyinConv.convertEntities(syllables, 'Pinyin', 'Pinyin')
[u'sun1', u'nü3', u'r5']

		Or more elegantly with entities already decomposed:

>>> f.convertEntities(['sun1', 'nu:r3'], 'Pinyin', 'Pinyin',
... sourceOptions={'toneMarkType': 'numbers', 'yVowel': 'u:',
... 'Erhua': 'oneSyllable'},
... targetOptions={'toneMarkType': 'numbers',
... 'Erhua': 'twoSyllables'})
[u'sun1', u'nü3', u'r5']

		Fix cosmetic errors in Pinyin input (note tone mark and apostrophe):

>>> f.convert(u"Wǒ peí nǐ qù Xīān.", 'Pinyin', 'Pinyin')
u"Wǒ péi nǐ qù Xī'ān."

		Fix more errors in Pinyin input (note diacritics):

>>> string = u"Wŏ peí nĭ qù Xīān."
>>> dialect = operator.PinyinOperator.guessReadingDialect(string)
>>> f.convert(string, 'Pinyin', 'Pinyin', sourceOptions=dialect)
u"Wǒ péi nǐ qù Xī'ān."

Class

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

library/cjklib.reading.operator.HiraganaOperator.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

HiraganaOperator — Hiragana

cjklib.reading.operator.HiraganaOperator is a simple, yet experimental
implementation of the Japanese Hiragana writing.

Class

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

library/cjklib.build.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

cjklib.build — Build database

Each table that needs to be created has to be implemented by subclassing a
TableBuilder. The
DatabaseBuilder is the central instance for managing the
build process. As the creation of a table can depend on other tables the
DatabaseBuilder keeps track of dependencies to process a build in the correct
order.

Building is tested on the following storage methods:

		SQLite

		MySQL

Examples

The following examples should give a quick view into how to use this
package.

		Create the DatabaseBuilder object with default settings (read from
cjklib.conf or using cjklib.db in same directory as default):

>>> from cjklib import build
>>> dbBuilder = build.DatabaseBuilder(dataPath=['./cjklib/data/'])
Removing conflicting builder(s) 'StrokeCountBuilder' in favour of 'CombinedStrokeCountBuilder'
Removing conflicting builder(s) 'CharacterResidualStrokeCountBuilder' in favour of 'CombinedCharacterResidualStrokeCountBuilder'

		Build the table of Jyutping syllables from a csv file:

>>> dbBuilder.build(['JyutpingSyllables'])
building table 'JyutpingSyllables' with builder
'JyutpingSyllablesBuilder'...
Reading table definition from file './cjklib/data/jyutpingsyllables.sql'
Reading table 'JyutpingSyllables' from file
'./cjklib/data/jyutpingsyllables.csv'

Functions

Classes

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

library/cjklib.test.dictionary.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

cjklib.test.dictionary — Unit tests for dictionary

New in version 0.3.

Classes

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

library/cjklib.reading.operator.html

 Navigation

 		
 index

 		cjklib 0.3.2 documentation »

cjklib.reading.operator — Operation on character readings

Architecture

A ReadingOperator supports basic operations
on string written in a character reading:

		decompose() breaks down
a text into the basic entities of that reading (additional non reading
substrings are also accepted).

		compose() joins these entities
together and might apply formatting rules needed by the reading.

		isReadingEntity() and
isFormattingEntity() are
provided to check which of the strings returned by
decompose() are
supported entities for the given reading. While a reading entity
expresses an entity of the language (in most cases a syllable), a
formatting entity merely exists for the convenience of the written form,
e.g. punctuation marks or syllable separators.

		getDefaultOptions()
will return the default reading dialect.

Many child classes add many more reading specific methods.

Romanisation

Additional to decompose()
provided by the class ReadingOperator a
RomanisationOperator offers a method
getDecompositions()
that returns several possible decompositions in an ambiguous case. Also,
as Romanisations have a fixed set of entities, a method
getReadingEntities()
offers access to a list of all accepted reading entities.

Decomposition

Transcriptions into the Latin (or Cyrilic) alphabet generate the problem that
syllable boundaries or boundaries of entities belonging to single
Chinese characters aren’t clear anymore once entities are grouped together.

Therefore it is important to have methods at hand to separate strings
and to split those into single entities. This though cannot always be done
in a clear and unambiguous way as several different decompositions might be
possible thus leading to the general case of ambiguous decompositions.

Many romanisations do provide a way to tackle this problem. Pinyin for
example requires the use of an apostrophe (') when the reverse process
of splitting the string into syllables gets ambiguous. The Wade-Giles
romanisation in its strict implementation asks for a hyphen used between all
syllables. The LSHK’s Jyutping when written with tone marks will always be
clearly decomposable as the digits mark syllable borders.

The method
isStrictDecomposition()
can be implemented to check if one possible decomposition is the
strict decomposition offered by the romanisation’s protocol.
This method should guarantee that under all
circumstances only one decomposed version will be regarded as strict.

If no strict version is yielded and different decompositions exist an
unambiguous decomposition can not be made. These decompositions can be
accessed through method
getDecompositions(),
even in a cases where a strict decomposition exists.

Letter case

Romanisations are special to other readings as their entities can be written
in upper or lower case, or in a mix of them. By default operators will
recognise both, this behaviour can be changed with option 'case' which
can alternatively be changed to 'lower'. Upper case is not explicitly
supported. If such a writing is needed, this behaviour can be implemented
by choosing lower case and converting strings to and from the operator
manually. Method
getReadingEntities()
will by default return lower case entities.

Tonal readings

Tonal readings are supported with class
TonalFixedEntityOperator.
It provides two methods
getTonalEntity() and
splitEntityTone()
to cope with tonal information in text.

Tones

Operators are free to handle tones according to their needs. No data type
constraint is given so that some will handle tones as integers, while others
will handle strings. Even the count of tones between different operators for
the same language may vary as one system might be more specific about tonal
features.

Plain entities

While some operators have a fixed set of accepted entities, the more
specific subgroup for tonal languages has a set of basic entities, such
entity here being called plain entity, which can be annotated with tonal
information to yield a regular reading entity. Some plain entities might
themselves be normal reading entities, while others might be not. No
requirements are made that the set of plain entity in cross product with
the set of tones will fully span the set of reading entities.

Examples

Decompose a reading string in Gwoyeu Romatzyh into single entities:

>>> from cjklib.reading import ReadingFactory
>>> f = ReadingFactory()
>>> f.decompose('"Hannshyue" .de mingcheng duey Jonggwo [...]', 'GR')
['"', 'Hann', 'shyue', '" ', '.de', ' ', 'ming', 'cheng', ' ', 'duey', ' ', 'Jong', 'gwo', ' [...]']

The same can be done by directly using the operator’s instance:

>>> from cjklib.reading import operator
>>> cy = operator.CantoneseYaleOperator()
>>> cy.decompose(u'gwóngjàuwá')
[u'gwóng', u'jàu', u'wá']

Composing will reverse the process, using a Pinyin string:

>>> f.compose([u'xī', u'ān'], 'Pinyin')
u"xī'ān"

For more complex operators, see
PinyinOperator
or MandarinIPAOperator.

Readings

		Mandarin Chinese
		cjklib.reading.operator.PinyinOperator — Hanyu Pinyin

		cjklib.reading.operator.WadeGilesOperator — Wade-Giles

		cjklib.reading.operator.GROperator — Gwoyeu Romatzyh

		cjklib.reading.operator.MandarinIPAOperator — IPA for Mandarin

		cjklib.reading.operator.MandarinBrailleOperator — Braille for Mandarin

		Cantonese
		cjklib.reading.operator.CantoneseYaleOperator — Cantonese Yale

		cjklib.reading.operator.JyutpingOperator — Jyutping

		cjklib.reading.operator.CantoneseIPAOperator — IPA for Cantonese

		Shanghainese
		cjklib.reading.operator.ShanghaineseIPAOperator — IPA for Shanghainese

		Korean
		cjklib.reading.operator.HangulOperator — Hangul

		Japanese
		cjklib.reading.operator.KanaOperator — Kana

		cjklib.reading.operator.KatakanaOperator — Katakana

		cjklib.reading.operator.HiraganaOperator — Hiragana

Base classes

 © Copyright 2006-2012, cjklib developers.
 Created using Sphinx 1.3.5.

